Experiments on TREC Robust 2004

This document gives a flavour of indexing and obtaining retrieval baselines on the TREC Robust04 test collections. You can run these experiments for yourself by using the associated provided notebook.

You need to have obtain the TREC Disks 4 & 5 corpora from NIST.

Topics and Qrels are provided through the "trec-robust-2004" PyTerrier dataset.

Indexing

Indexing is fairly simply. We apply a filter to remove files that shouldn’t be indexed, including the Congressional Record. Indexing on a reasonable machine using a single-thread takes around 7 minutes.

DISK45_PATH="/path/to/disk45"
INDEX_DIR="/path/to/create/the/index"

files = pt.io.find_files(DISK45_PATH)
# no-one indexes the congressional record in directory /CR/
# indeed, recent copies from NIST dont contain it
# we also remove some of the other unneeded files
bad = ['/CR/', '/AUX/', 'READCHG', 'READFRCG']
for b in bad:
    files = list(filter(lambda f: b not in f, files))
indexer = pt.TRECCollectionIndexer(INDEX_DIR, verbose=True)
indexref = indexer.index(files)

Retrieval - Simple Weighting Models

Here we define and evaluate standard weighting models.


BM25 = pt.terrier.Retriever(index, wmodel="BM25")
DPH  = pt.terrier.Retriever(index, wmodel="DPH")
PL2  = pt.terrier.Retriever(index, wmodel="PL2")
DLM  = pt.terrier.Retriever(index, wmodel="DirichletLM")

pt.Experiment(
    [BM25, DPH, PL2, DLM],
    pt.get_dataset("trec-robust-2004").get_topics(),
    pt.get_dataset("trec-robust-2004").get_qrels(),
    eval_metrics=["map", "P_10", "P_20", "ndcg_cut_20"],
    names=["BM25", "DPH", "PL2", "Dirichlet QL"]
)

Results are as follows:

name

map

P_10

P_20

ndcg_cut_20

0

BM25

0.241763

0.426104

0.349398

0.408061

1

DPH

0.251307

0.44739

0.361446

0.422524

2

PL2

0.229386

0.420884

0.343775

0.402179

3

Dirichlet QL

0.236826

0.407631

0.337952

0.39687

Retrieval - Query Expansion

Here we define and evaluate standard weighting models on top of DPH and BM25, respectively. We use the default Terrier parameters for query expansion, namely:

  • 10 expansion terms

  • 3 documents

  • For RM3, a lambda value of 0.5

Bo1 = pt.rewrite.Bo1QueryExpansion(index)
KL = pt.rewrite.KLQueryExpansion(index)
RM3 = pt.rewrite.RM3(index)
pt.Experiment(
    [
            BM25, 
            BM25 >> Bo1 >> BM25, 
            BM25 >> KL >> BM25, 
            BM25 >> RM3 >> BM25, 
    ],
    pt.get_dataset("trec-robust-2004").get_topics(),
    pt.get_dataset("trec-robust-2004").get_qrels(),
    eval_metrics=["map", "P_10", "P_20", "ndcg_cut_20"],
    names=["BM25", "+Bo1", "+KL", "+RM3"]
    )

pt.Experiment(
    [
            DPH, 
            DPH >> Bo1 >> DPH, 
            DPH >> KL >> DPH, 
            DPH >> RM3 >> DPH, 
    ],
    pt.get_dataset("trec-robust-2004").get_topics(),
    pt.get_dataset("trec-robust-2004").get_qrels(),
    eval_metrics=["map", "P_10", "P_20", "ndcg_cut_20"],
    names=["DPH", "+Bo1", "+KL", "+RM3"]
    )

Results are as follows:

name

map

P_10

P_20

ndcg_cut_20

0

BM25

0.241763

0.426104

0.349398

0.408061

1

+Bo1

0.279458

0.448996

0.378916

0.436533

2

+KL

0.279401

0.444177

0.378313

0.435196

3

+RM3

0.276544

0.453815

0.379518

0.430367

—-

——–

———-

———-

———-

—————

0

DPH

0.251307

0.447390

0.361446

0.422524

1

+Bo1

0.285334

0.458635

0.387952

0.444528

2

+KL

0.285720

0.458635

0.386948

0.442636

3

+RM3

0.281796

0.461044

0.389960

0.441863