Source code for pyterrier.transformer

import types
from warnings import warn
import pandas as pd
from deprecated import deprecated
from typing import Iterator, List, Union, Tuple, Protocol, runtime_checkable, Optional
import pyterrier as pt

LAMBDA = lambda:0  # noqa: E731 LAMBDA is used for the is_lambda method below, so the type is important
def is_lambda(v):
    return isinstance(v, type(LAMBDA)) and v.__name__ == LAMBDA.__name__

def is_function(v):
    return isinstance(v, types.FunctionType)

def is_transformer(v):
    if isinstance(v, Transformer):
        return True
    return False

def get_transformer(v, stacklevel=1):
    """ 
        Used to coerce functions, lambdas etc into transformers 
    """

    if is_transformer(v):
        return v
    if is_lambda(v):
        warn('Coercion of a lambda into a transformer is deprecated; use a pt.apply instead', stacklevel=stacklevel, category=DeprecationWarning)
        from .apply_base import ApplyGenericTransformer
        return ApplyGenericTransformer(v)
    if is_function(v):
        from .apply_base import ApplyGenericTransformer
        warn('Coercion of a function (called "%s") into a transformer is deprecated; use a pt.apply instead' % v.__name__, stacklevel=stacklevel, category=DeprecationWarning)
        return ApplyGenericTransformer(v)
    if isinstance(v, pd.DataFrame):
        warn('Coercion of a dataframe into a transformer is deprecated; use a pt.Transformer.from_df() instead', stacklevel=stacklevel, category=DeprecationWarning)
        return SourceTransformer(v)
    raise ValueError("Passed parameter %s of type %s cannot be coerced into a transformer" % (str(v), type(v)))


[docs] class Transformer: """ Base class for all transformers. Implements the various operators ``>>`` ``+`` ``*`` ``|`` ``&`` as well as :meth:`search` for executing a single query and :meth:`compile` for rewriting complex pipelines into more simples ones. Its expected that either :meth:`transform` or :meth:`transform_iter()` be implemented by any class extending this - this rule does not apply for indexers, which instead implement ``.index()``. pt.apply helper functions can be used to easily construct Transformers around a single function. """ name = "Transformer" def __new__(cls, *args, **kwargs): if cls.transform == Transformer.transform and cls.transform_iter == Transformer.transform_iter: raise NotImplementedError("You need to implement either .transform() or .transform_iter() in %s" % str(cls)) return super().__new__(cls)
[docs] @staticmethod def identity() -> 'Transformer': """ Instantiates a transformer that returns exactly its input. This can be useful for adding the candidate ranking score as a feature in for learning-to-rank:: bm25 = pt.terrier.Retriever(index, wmodel="BM25") two_feat_pipe = bm25 >> pt.Transformer.identify() ** pt.terrier.Retriever(index, wmodel="PL2") This will return a pipeline that produces a score column (BM25), but also has a features column containing BM25 and PL2 scores. """ return IdentityTransformer()
[docs] @staticmethod def from_df(input : pd.DataFrame, uniform=False) -> 'Transformer': """ Instantiates a transformer from an input dataframe. Some rows from the input dataframe are returned in response to a query on the :meth:`transform` method. Depending on the value `uniform`, the dataframe passed as an argument to :meth:`transform` can affect this selection. Arguments: input(DataFrame): a dataframe to store and return, based on setting of `uniform`. uniform(bool): If True, input will be returned in its entirety each time, else rows from input that match the qid values from the argument dataframe. """ if uniform: return UniformTransformer(input) return SourceTransformer(input)
[docs] def transform(self, inp: pd.DataFrame) -> pd.DataFrame: """ Abstract method that runs the transformer over Pandas ``DataFrame`` objects. This or :meth:`transform_iter` must be implemented by all Transformer objects. .. note:: Either :meth:`transform` or :meth:`transform_iter` must be implemented for all transformers. If not, a runtime error will be raised when constructing the transformer. When :meth:`transform` is not implemented, the default implementation runs :meth:`transform_iter` and converts the output to a ``DataFrame``. Arguments: inp(``pd.DataFrame``): The input to the transformer (e.g., queries, documents, results, etc.) Returns: The output of the transformer (e.g., result of retrieval, re-writing, re-ranking, etc.) :rtype: ``pd.DataFrame`` """ # We should have no recursive transform <-> transform_iter problem, due to the __new__ check. return pd.DataFrame(list(self.transform_iter(inp.to_dict(orient='records'))))
[docs] def transform_iter(self, inp: pt.model.IterDict) -> pt.model.IterDict: """ Abstract method that runs the transformer over iterable input (such as lists or generators), where each element is a dictionary record. This or :meth:`transform` must be implemented by all Transformer objects. This format can sometimes be easier to implement than :meth:`transform`. Furthermore, it avoids constructing expensive ``DataFrame`` objects. It is also used in the invocation of ``index()`` on a composed pipeline. .. note:: Either :meth:`transform` or :meth:`transform_iter` must be implemented for all transformers. If not, a runtime error will be raised when constructing the transformer. When :meth:`transform_iter` is not implemented, the default implementation runs :meth:`transform` and converts the output to an iterable. Arguments: inp(``Iterable[Dict]``): The input to the transformer (e.g., queries, documents, results, etc.) Returns: The output of the transformer (e.g., result of retrieval, re-writing, re-ranking, etc.) :rtype: ``Iterable[Dict]`` """ # We should have no recursive transform <-> transform_iter problem, due to the __new__ check. return self.transform(pd.DataFrame(list(inp))).to_dict(orient='records')
[docs] def __call__(self, inp: Union[pd.DataFrame, pt.model.IterDict, List[pt.model.IterDictRecord]]) -> Union[pd.DataFrame, pt.model.IterDict, List[pt.model.IterDictRecord]]: """ Runs the transformer for the given input and returns its output as the same type as the input. - When ``inp`` is a DataFrame, invokes :meth:`transform` and returns a DataFrame - When ``inp`` is a list, invokes :meth:`transform_iter` and returns a list - Otherwise, invokes :meth:`transform_iter` and returns a generic iterable (returning whatever type is returned from :meth:`transform_iter()`.) Arguments: inp(``pd.DataFrame``, ``Iterable[Dict]``, ``List[Dict]``): The input to the transformer (e.g., queries, documents, results, etc.) Returns: The output of the transformer (e.g., result of retrieval, re-writing, re-ranking, etc.) as the same type as the input. :rtype: ``pd.DataFrame``, ``Iterable[Dict]``, ``List[Dict]`` """ if isinstance(inp, pd.DataFrame): return self.transform(inp) out = self.transform_iter(inp) if isinstance(inp, list): return list(out) return out
[docs] def transform_gen(self, input : pd.DataFrame, batch_size=1, output_topics=False) -> Union[Iterator[pd.DataFrame], Iterator[Tuple[pd.DataFrame, pd.DataFrame]]]: """ Method for executing a transformer pipeline on smaller batches of queries. The input dataframe is grouped into batches of batch_size queries, and a generator returned, such that :meth:`transform` is only executed for a smaller batch at a time. Arguments: input(DataFrame): a dataframe to process batch_size(int): how many input instances to execute in each batch. Defaults to 1. """ docno_provided = "docno" in input.columns docid_provided = "docid" in input.columns if docno_provided or docid_provided: queries = input[["qid"]].drop_duplicates() else: queries = input batch : List[pd.DataFrame] = [] for query in queries.itertuples(): if len(batch) == batch_size: batch_topics = pd.concat(batch) batch=[] res = self.transform(batch_topics) if output_topics: yield res, batch_topics else: yield res batch.append(input[input["qid"] == query.qid]) if len(batch) > 0: batch_topics = pd.concat(batch) res = self.transform(batch_topics) if output_topics: yield res, batch_topics else: yield res
[docs] def search(self, query : str, qid : str = "1", sort : bool = True) -> pd.DataFrame: """ Method for executing a transformer (pipeline) for a single query. Returns a dataframe with the results for the specified query. This is a utility method, and most uses are expected to use the :meth:`transform` method passing a dataframe. Arguments: query(str): String form of the query to run qid(str): the query id to associate to this request. defaults to 1. sort(bool): ensures the results are sorted by descending rank (defaults to True) Example:: bm25 = pt.terrier.Retriever(index, wmodel="BM25") res = bm25.search("example query") # is equivalent to queryDf = pd.DataFrame([["1", "example query"]], columns=["qid", "query"]) res = bm25.transform(queryDf) """ import pandas as pd queryDf = pd.DataFrame([[qid, query]], columns=["qid", "query"]) rtr = self.transform(queryDf) if "qid" in rtr.columns and "rank" in rtr.columns: rtr = rtr.sort_values(["qid", "rank"], ascending=[True,True]) return rtr
[docs] def compile(self) -> 'Transformer': """Returns an optimised transformer, if possible, to improve performance. For instance, a pipeline of transformers can be optimised by fusing adjacent transformers. Returns: A new transformer that is equivalent to this transformer, but optimised. """ return self # by default, nothing to compile
[docs] def parallel(self, N : int, backend='joblib') -> 'Transformer': """ Returns a parallelised version of this transformer. The underlying transformer must be "picklable". For more information, see :ref:`parallel` documentation. Args: N(int): how many processes/machines to parallelise this transformer over. backend(str): which multiprocessing backend to use. Only two backends are supported, 'joblib' and 'ray'. Defaults to 'joblib'. """ from .parallel import PoolParallelTransformer return PoolParallelTransformer(self, N, backend)
# Get and set specific parameter value by parameter's name
[docs] def get_parameter(self, name : str): """ Gets the current value of a particular key of the transformer's configuration state. By default, this examines the attributes of the transformer object, using ``hasattr()`` and ``setattr()``. Arguments: name: name of parameter """ if hasattr(self, name): return getattr(self, name) else: raise ValueError(("Invalid parameter name %s for transformer %s. " + "Check the list of available parameters") %(str(name), str(self)))
[docs] def set_parameter(self, name : str, value): """ Adjusts this transformer's configuration state, by setting the value for specific parameter. By default, this examines the attributes of the transformer object, using ``hasattr()`` and ``setattr()``. Arguments: name: name of parameter value: current value of parameter """ if hasattr(self, name): setattr(self, name, value) else: raise ValueError(('Invalid parameter name %s for transformer %s. '+ 'Check the list of available parameters') %(name, str(self)))
def __rshift__(self, right) -> 'Transformer': from ._ops import Compose return Compose(self, right) def __rrshift__(self, left) -> 'Transformer': from ._ops import Compose return Compose(left, self) def __add__(self, right : 'Transformer') -> 'Transformer': from ._ops import Sum return Sum(self, right) def __pow__(self, right : 'Transformer') -> 'Transformer': from ._ops import FeatureUnion return FeatureUnion(self, right) def __mul__(self, rhs : Union[float,int]) -> 'Transformer': assert isinstance(rhs, int) or isinstance(rhs, float) from ._ops import ScalarProduct return self >> ScalarProduct(rhs) def __rmul__(self, lhs : Union[float,int]) -> 'Transformer': assert isinstance(lhs, int) or isinstance(lhs, float) from ._ops import ScalarProduct return self >> ScalarProduct(lhs) def __or__(self, right : 'Transformer') -> 'Transformer': from ._ops import SetUnion return SetUnion(self, right) def __and__(self, right : 'Transformer') -> 'Transformer': from ._ops import SetIntersection return SetIntersection(self, right) def __mod__(self, right : int) -> 'Transformer': assert isinstance(right, int) from ._ops import RankCutoff return self >> RankCutoff(right) def __xor__(self, right : 'Transformer') -> 'Transformer': from ._ops import Concatenate return Concatenate(self, right) @deprecated(version="0.11.1", reason="Use pyterrier-caching for more fine-grained caching, e.g. RetrieverCache or ScorerCache") def __invert__(self : 'Transformer') -> 'Transformer': from .cache import ChestCacheTransformer return ChestCacheTransformer(self) def __hash__(self): return hash(repr(self))
class TransformerBase(Transformer): @deprecated(version="0.9", reason="Use pt.Transformer instead of TransformerBase") def __init__(self, *args, **kwargs): super(Transformer, self).__init__(*args, **kwargs)
[docs] class Indexer(Transformer): def __new__(cls, *args, **kwargs): instance = super().__new__(cls, *args, **kwargs) # We have some patching do to in the (somewhat rare) case where the user implements transform/transform_iter # on an indexer. Normally these raise errors when called on an indexer, but in this case the user wants the # indexer to act as a transformer. So patch the complementary method to call the implemented one. if cls.transform != Indexer.transform and cls.transform_iter == Indexer.transform_iter: # User implemented transform on this indexer but not transform_iter. Replace transform_iter with the default # one, which invokes transform automatically. instance.transform_iter = types.MethodType(Transformer.transform_iter, instance) elif cls.transform == Indexer.transform and cls.transform_iter != Indexer.transform_iter: # User implemented transform_iter on this indexer but not transform. Replace transform with the default # one, which invokes transform_iter automatically. instance.transform = types.MethodType(Transformer.transform, instance) return instance
[docs] def index(self, iter : pt.model.IterDict, **kwargs): """ Takes an iterable of dictionaries ("iterdict"), and consumes them. The index method may return an instance of the index or retriever. This method is typically used to implement indexers that consume a corpus (or to consume the output of previous pipeline components that have transformer the documents being consumed). """ pass
def transform(self, inp: pd.DataFrame) -> pd.DataFrame: raise NotImplementedError('You called `transform()` on an indexer. Did you mean to call `index()`?') def transform_iter(self, inp: pt.model.IterDict) -> pt.model.IterDict: raise NotImplementedError('You called `transform_iter()` on an indexer. Did you mean to call `index()`?')
class IterDictIndexerBase(Indexer): @deprecated(version="0.9", reason="Use pt.Indexer instead of IterDictIndexerBase") def __init__(self, *args, **kwargs): super(Indexer, self).__init__(*args, **kwargs)
[docs] class Estimator(Transformer): """ This is a base class for things that can be fitted. """
[docs] def fit(self, topics_or_res_tr, qrels_tr, topics_or_res_va, qrels_va): """ Method for training the transformer. Arguments: topics_or_res_tr(DataFrame): training topics (usually with documents) qrels_tr(DataFrame): training qrels topics_or_res_va(DataFrame): validation topics (usually with documents) qrels_va(DataFrame): validation qrels """ pass
class EstimatorBase(Estimator): @deprecated(version="0.9", reason="Use pt.Estimator instead of EstimatorBase") def __init__(self, *args, **kwargs): super(Estimator, self).__init__(*args, **kwargs) class IdentityTransformer(Transformer): """ A transformer that returns exactly the same as its input. """ def __init__(self, *args, **kwargs): super(IdentityTransformer, self).__init__(*args, **kwargs) def transform(self, topics): return topics class SourceTransformer(Transformer): """ A Transformer that can be used when results have been saved in a dataframe. It will select results on qid. If a column is in the dataframe passed in the constructor, this will override any column in the topics dataframe passed to the transform() method. """ def __init__(self, df): self.df = df assert "qid" in self.df.columns def transform(self, topics): import numpy as np assert "qid" in topics.columns keeping = topics.columns common_columns = np.intersect1d(topics.columns, self.df.columns) # we drop columns in topics that exist in the self.df drop_columns = common_columns[common_columns != "qid"] if len(drop_columns) > 0: keeping = topics.columns[~ topics.columns.isin(drop_columns)] rtr = topics[keeping].merge(self.df, on="qid") return rtr class UniformTransformer(Transformer): """ A transformer that returns the same dataframe every time transform() is called. This class is useful for testing. """ def __init__(self, rtr): self.rtr = rtr def transform(self, topics): rtr = self.rtr.copy() return rtr def __repr__(self): return 'UniformTransformer()'
[docs] @runtime_checkable class SupportsFuseRankCutoff(Protocol):
[docs] def fuse_rank_cutoff(self, k: int) -> Optional[Transformer]: """Fuses this transformer with a following RankCutoff transformer. This method should return a new transformer that applies the new rank cutoff value `k`. Note that if the transformer currently applies a stricter rank cutoff than the one provided, it should not be relaxed. In this case, it is preferred to return `self`. If the fusion is not possible, `None` should be returned. Arguments: k(int): The rank cutoff requested """
[docs] @runtime_checkable class SupportsFuseFeatureUnion(Protocol):
[docs] def fuse_feature_union(self, other: Transformer, is_left: bool) -> Optional[Transformer]: """Fuses this transformer with another one that provides features. This method should return a new transformer that is equivalent to performing self ** other, or `None` if the fusion is not possible. Arguments: other(Transformer): transformer to the left or right. is_left(bool): is True if self's features are to the left of other's. Otherwise, self's features are to the right. """
[docs] @runtime_checkable class SupportsFuseLeft(Protocol):
[docs] def fuse_left(self, left: Transformer) -> Optional[Transformer]: """Fuses this transformer with a transformer that immediately precedes this one in a composed (`>>`) pipeline. The new transformer should have the same effect as performing the two transformers in sequence, i.e., `pipeline_unfused` and `pipeline_fused` in the following example should provide the same results for any input:: pipeline_unfused = left >> self pipeline_fused = self.fuse_left(left) A fused transformer should be more efficient than the unfused version. For instance, a retriever followed by a rank cutoff can be fused to perform the rank cutoff during retrieval. Arguments: left(Transformer): transformer to the left. Returns: A new transformer that is the result of merging this transformer with the left transformer, or none if a merge is not possible. """
[docs] @runtime_checkable class SupportsFuseRight(Protocol):
[docs] def fuse_right(self, right: Transformer) -> Optional[Transformer]: """Fuses this transformer with a transformer that immediately follows this one in a composed (`>>`) pipeline. The new transformer should have the same effect as performing the two transformers in sequence, i.e., `pipeline_unfused` and `pipeline_fused` in the following example should provide the same results for any input:: pipeline_unfused = self >> right pipeline_fused = self.fuse_right(right) A fused transformer should be more efficient than the unfused version. For instance, a retriever followed by a rank cutoff can be fused to perform the rank cutoff during retrieval. Arguments: right(Transformer): transformer to the right in a composed pipeline. Returns: A new transformer that is the result of merging this transformer with the right transformer, or none if a merge is not possible. """